Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 12(12): 823-834, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32558588

RESUMO

Historically, ligand-binding assays for pharmacokinetic samples employed duplicate rather than singlet-based analysis. Herein, the Translational and absorption, distribution, metabolism and excretion (ADME) Sciences Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) presents a study aiming to determine the value of duplicate versus singlet-based testing. Based on analysis of data collected from eight organizations for 20 drug candidates representing seven molecular types and four analytical platforms, statistical comparisons of validation and in-study quality controls and study unknown samples demonstrated good agreement across duplicate sets. Simulation models were also used to assess the impact of sample duplicate characteristics on bioequivalence outcomes. Results show that testing in singlet is acceptable for assays with %CV ≤15% between duplicates. Singlet-based approach is proposed as the default for ligand-binding assays while a duplicate-based approach is needed where imprecision and/or inaccuracy impede the validation of the assay.


Assuntos
Preparações Farmacêuticas/análise , Controle de Qualidade , Sítios de Ligação , Desenvolvimento de Medicamentos , Ligantes
2.
Anal Chim Acta ; 916: 42-51, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016437

RESUMO

To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissulfetos/química , Polietilenoglicóis/análise , Proteínas/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Animais , Calibragem , Haplorrinos , Controle de Qualidade
3.
J Immunol Methods ; 419: 18-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728474

RESUMO

Bioanalytical data from early human studies conducted in normal volunteers are often used for building pharmacokinetic/pharmacodynamic models that can predict outcomes of future studies in diseased patients. Thus, it is important to develop and validate reliable and accurate bioanalytical assays that instill confidence that the intended therapeutic species (total or free) are being measured. Assays quantifying the free therapeutic species, the partially bound (for multivalent therapeutics) and unbound species, require much more characterization than assays that quantify the total therapeutic species. We have developed an immunoassay to measure free BMS-962476, an Adnectin protein therapeutic against soluble proprotein convertase subtilisin kexin (PCSK)-9, and performed an in-depth characterization of the accuracy of this assay with the assistance of modeling. The experimental data correlates with modeled data within 15% at all clinically relevant levels of PCSK9 in normal and diseased populations.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Imunoensaio/métodos , Modelos Imunológicos , Algoritmos , Anticorpos Anti-Idiotípicos/metabolismo , Anticorpos Monoclonais/metabolismo , Cinética , Ligantes , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/imunologia , Pró-Proteína Convertases/metabolismo , Ligação Proteica , Proteínas/imunologia , Proteínas/metabolismo , Proteínas/farmacologia , Reprodutibilidade dos Testes , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo
4.
Biochemistry ; 48(37): 8879-90, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19678710

RESUMO

Uronate isomerase (URI) catalyzes the reversible isomerization of D-glucuronate to D-fructuronate and of D-galacturonate to D-tagaturonate. URI is a member of the amidohydrolase superfamily (AHS), a highly divergent group of enzymes that catalyze primarily hydrolytic reactions. The chemical mechanism and active site structure of URI were investigated in an attempt to improve our understanding of how an active site template that apparently evolved to catalyze hydrolytic reactions has been reforged to catalyze an isomerization reaction. The pH-rate profiles for k(cat) and k(cat)/K(m) for URI from Escherichia coli are bell-shaped and indicate that one group must be unprotonated and another residue must be protonated for catalytic activity. Primary isotope effects on the kinetic constants with [2-2H]-D-glucuronate and the effects of changes in solvent viscosity are consistent with product release being the rate-limiting step. The X-ray structure of Bh0493, a URI from Bacillus halodurans, was determined in the presence of the substrate D-glucuronate. The bound complex showed that the mononuclear metal center in the active site is ligated to the C-6 carboxylate and the C-5 hydroxyl group of the substrate. This hydroxyl group is also hydrogen bonded to Asp-355 in the same orientation as the hydroxide or water is bound in those members of the AHS that catalyze hydrolytic reactions. In addition, the C-2 and C-3 hydroxyl groups of the substrate are hydrogen bonded to Arg-357 and the carbonyl group at C-1 is hydrogen bonded to Tyr-50. A chemical mechanism is proposed that utilizes a proton transfer from C-2 of D-glucuronate to C-1 that is initiated by the combined actions of Asp-355 from the end of beta-strand 8 and the C-5 hydroxyl of the substrate that is bound to the metal ion. The formation of the proposed cis-enediol intermediate is further facilitated by the shuttling of the proton between the C-2 and C-1 oxygens by the conserved Tyr-50 and/or Arg-355.


Assuntos
Aldose-Cetose Isomerases/química , Amidoidrolases/química , Evolução Molecular , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Bacillus/enzimologia , Catálise , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Família Multigênica , Mutagênese Sítio-Dirigida , Especificidade por Substrato
5.
Biochemistry ; 47(16): 4843-50, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18373355

RESUMO

MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins, which is an intermediate in the biosynthetic pathway of mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside (MSH or AcCys-GlcN-Ins). MSH is produced by Mycobacterium tuberculosis, members of the Actinomycetes family, to maintain an intracellular reducing environment and protect against oxidative and antibiotic induced stress. The biosynthesis of MSH is essential for cell growth, and therefore, the MSH biosynthetic enzymes present potential targets for inhibitor design. The formation of kinetically competent adenylated intermediates was suggested by the observation of positional isotope exchange (PIX) reaction using [betagamma-(18)O6]-ATP in the presence of cysteine. The PIX rate depends on the presence of cysteine and increases with concentrations of cysteine. The loss of PIX activity upon the addition of small concentrations of pyrophosphatase suggests that the PP(i) is free to dissociate from the active site of cysteine ligase into the bulk solution. The PIX activity is also eliminated at high concentrations of GlcN-Ins, consistent with the mechanism in which GlcN-Ins binds after cysteine-adenylate formation. This PIX analysis confirms that MshC catalyzes the formation of a kinetically competent cysteinyl-adenylate intermediate after the addition of ATP and cysteine.


Assuntos
Cisteína/metabolismo , Mycobacterium smegmatis/enzimologia , Peptídeo Sintases/análise , Peptídeo Sintases/metabolismo , Isótopos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeo Sintases/química
6.
Biochemistry ; 46(49): 13983-93, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18001139

RESUMO

Cobyric acid synthetase (CbiP) from Salmonella typhimurium catalyzes the glutamine and ATP-dependent amidation of carboxylates b, d, e, and g within adenosyl cobyrinic acid a,c-diamide. After each round of catalysis the partially amidated intermediates are released into solution and the four carboxylates are amidated in the sequential order of e, d, b, and g for the wild type enzyme. In the presence of [gamma-18O4]-ATP and adenosyl cobyrinic a,c-diamide the enzyme will catalyze the positional isotope exchange of the betagamma-bridge oxygen with the two beta-nonbridge oxygens. These results support the proposal that ATP is used to activate the carboxylate groups via the formation of a phosphorylated intermediate. CbiP catalyzes the hydrolysis of glutamine in the absence of ATP or adenosyl cobyrinic acid a,c-diamide, but the rate of glutamine hydrolysis is enhanced by a factor of 60 in the presence of these two substrates together. This result suggests that the formation of the phosphorylated intermediate is coupled to the activation of the site utilized for the hydrolysis of glutamine. However, the rate of glutamine hydrolysis is approximately 2.5 times the rate of ADP formation, indicating that the two active sites are partially uncoupled from one another and that some of the ammonia from glutamine hydrolysis leaks into the bulk solution. The mutation of D146 to either alanine or asparagine results in a protein that is able to catalyze the formation of cobyric acid. However, the strict amidation order observed with the wild type CbiP is partially randomized with carboxylate b being amidated last. With the D146N mutant, the predominant pathway occurs in the sequence d, e, g, and b. It is proposed that this residue enforces the amidation order in the wild type enzyme via charge-charge repulsion between the side chain carboxylate and the carboxylates of the substrate.


Assuntos
Transaminases/genética , Transaminases/metabolismo , Cobamidas/metabolismo , Cinética , Modelos Moleculares , Mutação Puntual , Salmonella typhimurium/enzimologia
8.
Biochemistry ; 45(24): 7453-62, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768441

RESUMO

Uronate isomerase, a member of the amidohydrolase superfamily, catalyzes the isomerization of D-glucuronate and D-fructuronate. During the interconversion of substrate and product the hydrogen at C2 of D-glucuronate is transferred to the pro-R position at C1 of the product, D-fructuronate. The exchange of the transferred hydrogen with solvent deuterium occurs at a rate that is 4 orders of magnitude slower than the interconversion of substrate and product. The enzyme catalyzes the elimination of fluoride from 3-deoxy-3-fluoro-D-glucuronate. These results have been interpreted to suggest a chemical reaction mechanism in which an active site base abstracts the proton from C2 of D-glucuronate to form a cis-enediol intermediate. The conjugate acid then transfers this proton to C1 of the cis-enediol intermediate to form D-fructuronate. The loss of fluoride from 3-deoxy-3-fluoro-D-glucuronate is consistent with a stabilized carbanion at C2 of the substrate during substrate turnover. The slow exchange of the transferred hydrogen with solvent water is consistent with a shielded conjugate acid after abstraction of the proton from either D-glucuronate or D-fructuronate during the isomerization reaction. This conclusion is supported by the competitive inhibition of the enzymatic reaction by D-arabinaric acid and the monohydroxamate derivative with Ki values of 13 and 670 nM, respectively. There is no evidence to support a hydride transfer mechanism for uronate isomerase. The wild type enzyme was found to contain 1 equiv of zinc per subunit. The divalent cation could be removed by dialysis against the metal chelator, dipicolinate. However, the apoenzyme has the same catalytic activity as the Zn-substituted enzyme and thus the divalent metal ion is not required for enzymatic activity. This is the only documented example of a member in the amidohydrolase superfamily that does not require one or two divalent cations for enzymatic activity.


Assuntos
Aldose-Cetose Isomerases , Amidoidrolases/química , Amidoidrolases/metabolismo , Metais/química , Metais/metabolismo , Amidoidrolases/análise , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Sítios de Ligação , Catálise , Cátions Bivalentes , Quelantes/farmacologia , Diálise , Hidrogênio , Cinética , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ácidos Picolínicos/farmacologia , Prótons , Zinco/análise
9.
Biochemistry ; 43(33): 10619-27, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15311923

RESUMO

Cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium (CbiA) is the first glutamine amidotransferase in the anaerobic biosynthetic pathway of vitamin B(12) and catalyzes the ATP-dependent synthesis of cobyrinic acid a,c-diamide from cobyrinic acid using either glutamine or ammonia as the nitrogen source. The cbiA gene was cloned, the overexpressed protein was purified to homogeneity, and the kinetic parameters were determined. CbiA is a monomer with K(m) values of 0.74, 2.7, 53, and 26 200 microM for cobyrinic acid, ATP, glutamine, and ammonia, respectively. Analysis of the glutaminase partial reaction demonstrated that the hydrolysis of glutamine and the synthesis of the cobyrinic acid a,c-diamide product are uncoupled. The time course for the synthesis of the diamide product and positional isotope exchange experiments demonstrate that CbiA catalyzes the sequential amidation of the c- and a-carboxylate groups of cobyrinic acid via the formation of a phosphorylated intermediate. These results support a model for the catalytic mechanism in which CbiA catalyzes the amidation of the c-carboxylate, and then the intermediate is released into solution and binds to the same catalytic site for the amidation of the a-carboxylate. Several conserved residues in the synthetase active site were mutated to address the molecular basis of the amidation order; however, no changes in the order of amidation were obtained. The mutants D45N, D48N, and E90Q have a dramatic effect on the catalytic activity, whereas no effect was found for the mutant D97N. The substitutions by alanine of L47 and Y46 residues specifically decrease the affinity of the enzyme for the c-monoamide intermediate.


Assuntos
Salmonella typhimurium/enzimologia , Transaminases/química , Transaminases/metabolismo , Substituição de Aminoácidos , Catálise , Clonagem Molecular , Cinética , Isótopos de Oxigênio , Fosforilação , Especificidade por Substrato , Transaminases/genética
10.
Biochemistry ; 42(17): 5108-13, 2003 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12718554

RESUMO

Pantothenate synthetase from Mycobacterium tuberculosis catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine. The formation of a kinetically competent pantoyl-adenylate intermediate was established by the observation of a positional isotope exchange (PIX) reaction within (18)O-labeled ATP in the presence of d-pantoate. When [betagamma-(18)O(6)]-ATP was incubated with pantothenate synthetase in the presence of d-pantoate, an (18)O label gradually appeared in the alphabeta-bridge position from both the beta- and the gamma-nonbridge positions. The rates of these two PIX reactions were followed by (31)P NMR spectroscopy and found to be identical. These results are consistent with the formation of enzyme-bound pantoyl-adenylate and pyrophosphate upon the mixing of ATP, D-pantoate, and enzyme. In addition, these results require the complete torsional scrambling of the two phosphoryl groups of the labeled pyrophosphate product. The rate of the PIX reaction increased as the D-pantoate concentration was elevated and then decreased to zero at saturating levels of D-pantoate. These inhibition results support the ordered binding of ATP and D-pantoate to the enzyme active site. The PIX reaction was abolished with the addition of pyrophosphatase; thus, PP(i) must be free to dissociate from the active site upon formation of the pantoyl-adenylate intermediate. The PIX reaction rate diminished when the concentrations of ATP and D-pantoate were held constant and the concentration of the third substrate, beta-alanine, was increased. This observation is consistent with a kinetic mechanism that requires the binding of beta-alanine after the release of pyrophosphate from the active site of pantothenate synthetase. Positional isotope exchange reactions have therefore demonstrated that pantothenate synthetase catalyzes the formation of a pantoyl-adenylate intermediate upon the ordered addition of ATP and pantoate.


Assuntos
Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/metabolismo , Marcação por Isótopo , Cinética , Espectroscopia de Ressonância Magnética , Isótopos de Oxigênio , Fosfatos/metabolismo , Compostos de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...